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A theory to predict the steady-state position of a dissipative flow-controlled system, as defined by a control
volume, is developed based on the maximum entropy principle of Jaynes, involving minimization of a gener-
alized free-energy-like potential. The analysis provides a theoretical justification of a local, conditional form of
the maximum entropy production principle, which successfully predicts the observable properties of many such
systems. The analysis reveals a very different manifestation of the second law of thermodynamics in steady-
state flow systems, which provides a driving force for the formation of complex systems, including life.

DOI: 10.1103/PhysRevE.80.021113 PACS number�s�: 05.70.Ln, 05.65.�b, 89.75.Fb

I. INTRODUCTION

For over three decades, the maximum entropy production
�MEP� principle—more precisely termed the “maximum rate
of thermodynamic entropy production” principle—has been
found to give successful predictions for the steady-state
properties of a variety of dynamic many-degree-of-freedom
systems subject to flows of mass, energy, momentum,
charge, and/or with chemical reactions. Prominent examples
include the global general circulation �atmospheric and oce-
anic� system of the Earth �1–13� and possibly other planetary
bodies �14,15�, turbulent convection in a heated fluid
�Rayleigh-Bénard �16� convection� �17�, mantle convection
in the Earth �18–20� and moons of Jupiter and Saturn �19�,
global Earth-biosphere water and nutrient cycles �9,21,22�,
vegetation spatial distributions �23�, biochemical metabolism
�24�, and ecosystem operation �25�. The Earth climate mod-
els include quite accurate predictions of the mean latitudinal
air temperature, fractional cloud cover, meridional heat flux
�1�, mean vertical air temperature profile, vertical heat flux
�4�, and historical latitudinal air temperature gradients over
decadal and glacial-interglacial time scales �12�. The MEP
principle has also been invoked for the explanation of shear
turbulence �Couette flow� �17�, incompressible and com-
pressible turbulent fluid flows �26�, currents in electrical cir-
cuits �27–30�, plasma formation �31� and structure �32�,
crystal growth �33�, chemical cycle kinetics �34�, diffusion in
nonuniform solids �35�, photosynthesis mechanism �36�, bio-
molecular motors �37�, and economic activity �38�; several
detailed reviews are available �9,11,39,40�. The MEP prin-
ciple has even been invoked as a technical basis for the Gaia
hypothesis �10,21,41,42�. The apparent successes of the
MEP principle—which can exclude most details of the
dynamics—contradict the prevailing paradigm of developing
ever-more-complicated dynamic models of complex systems,
for example, the general circulation models of the Earth cli-
mate system. This suggests that, in a large class of steady-
state systems, the dynamics adjust themselves to achieve a

state of MEP, rather than the entropy production being a
consequence of the dynamics. This implies the action of
an as-yet unrecognized physical principle applicable to
flow systems—beyond the domain of present-day
thermodynamics—which provides the driving force in the
system and so can be used as a “shortcut” in system
modeling.

In recent years, several workers have attempted to justify
the MEP principle on theoretical grounds. Dewar �43,44�
analyzed a time-variant nonequilibrium system in terms of
its available paths in parameter space; the transient and the
steady-state positions are inferred by the maximum entropy
�MaxEnt� method of Jaynes �45–51�, using an entropy de-
fined on the set of paths. The analysis has received some
criticisms �52,53�, suggesting it might apply only in the near-
equilibrium linear �Onsager� regime, in which fluxes are lin-
early proportional to their driving gradients �54,55�. Attard
�56,57� also gave an analysis based on an entropy defined on
transition probabilities, but cast in the terminology of tradi-
tional statistical mechanics �although he denied the MEP
principle in favor of an alternative�. Beretta �58–61� exam-
ined a steepest entropy ascent principle for transitions be-
tween states, based on a quantum thermodynamics formula-
tion. Other arguments for MEP have been given by
Županović et al. �62�, based on the “most probable” increase
in entropy during a fluctuation �also criticized �52��, and by
Martyushev �63�, based on a frame of reference �relative
velocity� argument. Of course, this is a well-trodden field,
with many historical antecedents to the MEP principle �see
the fascinating review by Martyushev and Seleznev �39��. If
the above objections can be overcome, the path-based analy-
ses hold the promise of predicting the behavior of time-
variant systems �transport phenomena�. However, they seem
unnecessarily complicated for the task of predicting the
steady-state position, when �as will be shown� a more direct
method is available.

The aim of this work is to outline a theory to directly
predict the steady-state position of a flow-controlled system,
based on Jaynes’ MaxEnt method �45–51�. The analysis pro-
vides a theoretical derivation of a local, conditional form of
the MEP principle for steady-state thermodynamic systems*r.niven@adfa.edu.au
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of any type �e.g., heat flow, fluid flow, diffusive flow, elec-
trical flow, chemical and process engineering, and biological
and human systems�. The approach taken here differs from
previous analyses �43,44,56,57,62� in that it considers flux
rather than path probabilities, to directly obtain the steady-
state position. It also employs the local equilibrium assump-
tion commonly used in engineering control volume analysis,
but does not appear to be restricted to the linear transport
regime; indeed, the linear regime emerges as a first-order
approximation to the analysis.

This work is set out as follows. In Sec. II, the principles
of Jaynes’ generic theory are outlined, leading in Sec. III to a
discussion of different types of physical systems, which in-
fluences the manner in which Jaynes’ method can be applied.
Equilibrium systems are first examined, to demonstrate the
universality of Jaynes’ method and to highlight the �easily
overlooked� equilibrium analog of the MEP principle. In Sec.
IV, a theory is developed to predict the steady-state position
of a flow-controlled thermodynamic system; by comparison
to a traditional control volume analysis, this is found to give
a local, conditional form of the MEP principle. The implica-
tions of the analysis for the formation of complex systems,
including life, are discussed in Sec. V.

II. JAYNES’ GENERIC THEORY

We first summarize Jaynes’ generic formulation of statis-
tical mechanics �45–51�, based on the minimum divergence,
the maximum relative entropy, or the minimum cross-
entropy �MinXEnt� principle, within which the MaxEnt prin-
ciple can be considered as a special case. Consider a system
of N discrete distinguishable entities distributed among s dis-
tinguishable categories or “states” within a system, with con-
stant source �“prior”� probabilities qi for the filling of each
state i=1, . . . ,s �the states i may be multivariate, e.g.,
�i , j , . . .��. From information-theoretical considerations
�64,65� and/or by combinatorial arguments �66–71�, it can be
shown that in the asymptotic limit N→� �the Stirling ap-
proximation �72� or Sanov’s theorem �73��, the “least infor-
mative” or the ‘‘most probable’’ distribution of the system is
obtained by minimizing the Kullback-Leibler cross-entropy
function �74,75� �the negative of the relative entropy func-
tion �47��1

D = �
i=1

s

pi ln
pi

qi
�1�

subject to the natural and the moment constraints on the
system, respectively,

�
i=1

s

pi = 1, �2�

�
i=1

s

pifri = �fr	, r = 1, . . . ,R , �3�

where pi is the probability of the ith category, fri is the value
of property fr for the ith category, and �fr	 is the mathemati-
cal expectation of fri �generally, each fr is a “conserved
quantity”�. Applying Lagrange’s method of undetermined
multipliers to Eqs. �1�–�3� gives the stationary or the most
probable distribution of the system,

pi
� = qi exp
− �0

� − �
r=1

R

�rfri� = �Zq
��−1qi exp
− �

r=1

R

�rfri� ,

Zq
� = e�0

�

= �
i=1

s

qi exp
− �
r=1

R

�rfri� , �4�

where �r is the Lagrangian multiplier for the rth constraint,
�0

� is the “Massieu function” �76�, Zq
� is the generalized par-

tition function, and “ �” denotes a quantity at the stationary
position. Here “stationary” implies a time-invariant distribu-
tion �4�, with no additional physical interpretation. Subse-
quent generic analyses pioneered by Jaynes �45–51,70� give
the relations

D� = − �0
� − �

r=1

R

�r�fr	 , �5�

��0
�

��r
= − �fr	 , �6�

�2�0
�

��r
2 = �fr

2	 − �fr	2 = −
��fr	
��r

, �7�

�2�0
�

��m � �r
= �frfm	 − �fr	�fm	 = −

��fr	
��m

= −
��fm	
��r

, �8�

dD� = − �
r=1

R

�r�d�fr	 − �Wr� = − �
r=1

R

�r�Qr, �9�

where �Wr= �dfr	=�i=1
s pi

�dfri and �Qr=�i=1
s dpi

� fri can be
identified, respectively, as the increments of “generalized
work” on the system and “generalized heat” added to the
system during a change in the rth constraint d�fr	, in which
�x denotes a path-dependent differential. �A path is here de-
fined as a specified trajectory in macroscopic coordinates,
e.g., constant constraints ��fr	�, constant multipliers ��r�, or
some mixed form.� To avoid double counting, the �Wr terms
represent generalized work processes in addition to those
introduced by other constraints.2

For equal qi=s−1, the foregoing analysis reduces to that of
maximizing the Shannon entropy �64�

1The use of the continuous form of Eq. �1�, or the von Neumann
entropy based on density matrices, requires different mathematics
but gives essentially the same macroscopic results �4�–�9� �46,47�.

2This point is further explained in Sec. III A and footnote 3, by
reference to an example equilibrium system.
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H = − �
i=1

s

pi ln pi �10�

subject to the same constraints �2� and �3�. This gives the
same relations �4�–�9�, except that D� is replaced with −H�

and the qi cancel from Eq. �4�.
It is important to note that relations �4�–�9� only concern

the stationary position, i.e., they apply “on the manifold of
stationary positions.” Transitions between stationary posi-
tions are thus assumed to be quasistatic, i.e., they are ideal-
ized as taking place only between stationary positions, with-
out any intermediate nonstationary positions �77�.
Comparing Eq. �9� to the derivative of Eq. �5� gives the
differential

d�� = − d�0
� = − d ln Zq

�

= �
r=1

R

�r�Wr + �
r=1

R

d�r�fr	

= dD� + �
r=1

R

�rd�fr	 + �
r=1

R

d�r�fr	 . �11�

d�� therefore encompasses “all possible changes” in the sta-
tionary position due to changes in the constraints, multipli-
ers, or cross entropy �generalized heat input�. For constant
multipliers, d�� ���r�

is equal to the weighted change in gen-
eralized work on the system; its integrated form �� can
therefore be regarded as a generalized dimensionless free-
energy-like function or a generalized potential �45–49,51�.

We now come to the central tenet of this analysis, the
importance of which will become clear in Secs. III and IV. If
a dynamic system described by Eqs. �4�–�9� and �11� con-
tains mechanism�s� by which its generalized potential �� can
be dissipated �converted to an unrecoverable form�, by pro-
cesses not represented in the constraints, then by successive
increments d���0 it will converge to a stationary position
of no further extractable generalized work d��=0, equiva-
lent to the minimum position ��=�min

� . Here we confine the
discussion to systems with reproducible dissipative phenom-
ena, whereupon �min

� will be predictable �i.e., �� is a state
function�. If the incremental changes are restricted in some
manner—e.g. the system is confined to a constant-constraint
��fr	� or a constant-multiplier ��r� path—then �min

� will be
the local �path-dependent� minimum. If there is no such path
restriction, �min

� will constitute the global minimum.
It is emphasized that the above analysis �1�–�11� is ge-

neric, and applies to any probabilistic system which can be
analyzed by the Kullback-Leibler cross entropy �1� or the
Shannon entropy �10�. Although its primary application has
been to equilibrium thermodynamics, the analysis has far
broader power of application �45–51�. For this reason, the
symbols used above are generic, and should not be inter-
preted in terms of particular thermodynamic quantities ex-
cept when so stated �e.g., the generic entropy H should not
be confused with the thermodynamic entropy S�.

III. TYPES OF SYSTEMS

A. Quantity-constrained (equilibrium) systems

To understand the application of MinXEnt, we now con-
sider several types of probabilistic systems composed of dis-
crete entities, as illustrated in Fig. 1. Historically, Jaynes’
method �and its predecessor, traditional statistical mechanics�
has been applied to �a� isolated �microcanonical� systems
�Fig. 1�a��, held in a state of constant mean contents �fr	 of
various physical quantities fr by isolation from the rest of the
universe, and �b� various types of open or diffusive �e.g.,
canonical and grand canonical� systems �Fig. 1�b��, open to
the diffusion of various quantities fr but with no directed
flows, and in contact with infinite generalized baths of con-
stant corresponding �r �45�. Clearly, such representations are
convenient models to enable the construction of thermody-
namic relationships: no system can really be isolated from
the rest of the universe, while the mechanisms used to main-
tain the generalized baths are not usually explained. Notwith-
standing this criticism, in either case the least informative or
the most probable position of the system—the equilibrium
position—can be calculated by the application of MinXEnt
�or, for equal qi, by MaxEnt� subject to the natural and the
moment constraints �45�. Jaynes’ generic formulation �Sec.
II� can then be applied to the analysis of such systems.

As an example, consider an open or “heterogeneous” ther-
modynamic system for which the “entities” are interpreted
either as discrete particles �atoms, ions, molecules, etc.� or,
in the Gibbs-Einstein representation, as duplicates of the en-
tire system �78–80�. Each entity has the choice of its �quan-
tized� internal energy Ui �i=1, . . . ,s�, volume element Vj �j

Flow-
controlled
system

Flows
{ �r =
const.}

Control volume(c)

Diffusive
system

Physical
quantities

{fr}

Bath
{λr=const.}, e.g. T,P,{µc},...

(b)

{ fr =const.}
e.g. U , V ,{ nc },...

Isolated system

Impermeable wall(a)

FIG. 1. �Color online� Different types of physical systems: �a�
isolated, �b� diffusive, and �c� flow controlled �control volume�.
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=1, . . . , t�, and moles of particles nNc
of each chemical spe-

cies c=1, . . . ,C, for which the number of particles Nc can
range between zero and �effectively� infinity. The system is
constrained by its natural constraint �2�, mean internal en-
ergy �U	, mean volume �V	, and mean moles of particles �nc	
of each type c. Assuming, from the principle of insufficient
reason �51�, that each multivariate state {i , j , �Nc�} is equi-
probable, we maximize the Shannon entropy

Heq = − �
i=1

s

�
j=1

t

�
N1=0

�

�
N2=0

�

¯ �
NC=0

�

pi,j,�Nc� ln pi,j,�Nc�, �12�

subject to the constraints, giving the equilibrium position �4�,

pi,j,�Nc�
� =

�i,j,�Nc�
�

��
,

�i,j,�Nc�
� = exp
− �UUi − �VVj − �

c=1

C

�cnNc� ,

�� = e�0
�

= �
i=1

s

�
j=1

t

�
N1=0

�

�
N2=0

�

¯ �
NC=0

�

�i,j,�Nc�
� . �13�

From our existing �historical� knowledge of thermodynamics
�e.g., by monotonicity arguments �50� or from the zeroth law
of thermodynamics �49,50��, we can identify the Lagrangian
multipliers �U=1 /kT, �V= P /kT, and �c=−	c /kT, as func-
tions of the Boltzmann constant k, absolute temperature T,
absolute pressure P, and molar chemical potential 	c of each
species c, whence

�i,j,�Nc�
� = exp
−

Ui

kT
−

PVj

kT
+ �

c=1

C
	cnNc

kT
� , �14�

and �� is the grand partition function. Recognizing the ther-
modynamic entropy as S=kHeq, Eqs. �5� and �9� give

S� = k ln �� +
�U	
T

+
P�V	

T
− �

c=1

C
	c�nc	

T
, �15�

dS� =
�QU

T
+

P�QV

T
− �

c=1

C 	c�Qnc

T

=
1

T
�d�U	 − �WU� +

P

T
�d�V	 − �WV�

− �
c=1

C
	c

T
�d�nc	 − �Wnc

�

=
d�U	

T
+

Pd�V	
T

−
��W

T
− �

c=1

C
	cd�nc	

T

− �
c=1

C 	c�Wnc

T
, �16�

where �QU, �QV, and �Qnc
are the increments in generalized

heats, and �WU, �WV, and �Wnc
are the increments in gener-

alized work associated, respectively, with constraints �U	,
�V	, and �nc	. In the first line of Eq. �16�, the first two terms
can be amalgamated into the �actual� heat term �Q /T used in
thermodynamics; for systems with invariable particle num-
bers, �Qnc

=0 and Eq. �16� reduces to the Clausius �81�
equality dS�=�Q /T. Similarly, in the last line of Eq. �16�, the
�WU and the P�WV terms are amalgamated into the com-
bined �actual� work ��W; the latter therefore represents the
total �actual� work on the system, in addition to the Pd�V	
and the 	cd�nc	 works.3 For this study, we ignore relativistic
or other changes in the “mass levels” and set ��Wnc

=0. It is
again emphasized that Eqs. �13�–�16� apply only to quasi-
static transitions, in this case “on the manifold of equilibrium
positions.”

Equations �11�, �15�, and �16� give the change in the �ac-
tual� free-energy function, in energy units,

dJ� = kTd�eq
� = − kTd ln ��

= − TdS� + d�U	 + Pd�V	 − �
c=1

C

	cd�nc	

+ Td
 1

T
��U	 + d
P

T
��V	 − �

c=1

C

d
	c

T
��nc	�

�17�

in which, from Eq. �16�, the first four terms on the right
correspond to the total work ��W. Note that—as per Gibbs
�82,83�—we could restrict Eq. �17� to these first four terms,
by imposing the Gibbs-Duhem relation �r=1

R d�r�fr	=0. Here
we wish, however, to consider all possible changes in J�,
allowing both Gibbs-Duhem paths and non-Gibbs-Duhem
paths. Integration of Eq. �17� from a zero reference state then
yields4

J� = kT�eq
� = − kT ln �� = − TS� + �U	 + P�V	 − �

c=1

C

	c�nc	 .

�18�

Although less well known, J� was reported by Gibbs �83�; in
modified form, it forms the basis of the available energy,
essergy and exergy concepts �83–89�. For constant composi-
tion, J� reduces to the Gibbs free energy G�=−TS�+ �U	
+ P�V	 plus a constant, while for constant composition and

3As mentioned in Sec. II, �Wr refers to work terms in addition to
those introduced by the other constraints. Thus in the above equi-
librium system, the Pd�V	 work cannot be introduced within the
work term �WU associated with �U	, since it is already included by
virtue of the �V	 constraint. Similarly, �WU cannot include the
chemical-potential work terms 	cd�nc	, since these are included by
the �nc	 constraints. This consideration is quite general: the con-
straints �fr	 must be linearly independent, but need not be orthogo-
nal; the weighted generalized work terms �r�Wr therefore cannot
include processes represented by �md�fm	, m�r.

4Strictly speaking, we must integrate kd�eq
� and multiply by T, an

awkwardness produced by the conversion of ln �� to energy rather
than entropy units �see Appendix A�. Alternatively, integration of
dJ� �T,P,�	c� directly yields Eq. �18� �83�.
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volume, it gives the Helmholtz free energy F�=−TS�+ �U	
plus a constant.

We first examine Eqs. �17� and �18� from the original
perspective of Gibbs �82,83� �see also �77,90,91��. Following
the standard treatment, we consider an open system sur-
rounded by an intensive variable bath �Fig. 1�b��, with the
double system-bath isolated from the rest of the universe; a
single isolated system �Fig. 1�a�� can then be considered as a
special case. From Eqs. �16� and �17�, dJ� �T,P,�	c�=��W
gives the total change in work on the system along a Gibbs-
Duhem path due to processes not represented in the con-
straints. Thus dJ� �T,P,�	c��0 indicates spontaneous change
�work extraction� and dJ� �T,P,�	c�
0 a forced change �work
input�. If the system contains some reproducible dissipative
process�es� by which work can be expended �e.g., friction
�48,49� or chemical reactions �92,93��, it will move toward
the equilibrium defined by dJ� �T,P,�	c�=0 or, in other words,
to the minimum free-energy position J�=Jmin

� . This was im-
plicitly understood by Gibbs �82�, who referred to the equi-
librium surface �the “fundamental relation” or Euler surface�
as the “surface of dissipated energy.” If no work is extracted
in useful form, each increment of lost work is given by
�94–96�

dJ��T,P,�	c� = − TdS��T,P,�	c� − T���T,P,�	c� � 0, �19�

where dS� �T,P,�	c� and �� �T,P,�	c�, respectively, give the
change in entropy within and outside the system. Equation
�19� represents the net irreversible increase in entropy in the
double system-bath �converted to energy units and with
change in sign�, reflecting the interplay between irreversible
change within the system and the exporting of irreversible
change to the bath by the transfer of generalized heats �c.f.
�94–98��. The second term �� �T,P,�	c� can be labeled the en-
tropy produced5 by the system, since it materializes outside
rather inside the system. If the incremental losses are unre-
coverable �i.e., dS� �T,P,�	c�0 and �� �T,P,�	c�0�, the equi-
librium position J�=Jmin

� will correspond to the position of
maximum entropy produced, �=�max �c.f. �93��.

We now go a step farther than Gibbs, to consider systems
which can deviate from a Gibbs-Duhem path during dissipa-
tion. We again only consider systems with reproducible pro-
cesses. Here it is preferable to use the potential d��=kd�eq

�

=dJ� /T �the grand potential form of the negative Massieu
function �76� or negative Planck potential �94,95,97–100�;
see Appendix A� rather than dJ�, to more effectively handle
changes in temperature. From Eq. �17�, each increment d��

�0 can be divided into two parts: �i� the part
d�� �S�,�U	,�V	,��nc	��0 which is expended against changes in
the intensive variables, causing an irreversible loss of “abil-

ity to do generalized work,” manifested as an increase in
entropy within or outside the system, and �ii� the part
d�� �T,P,�	c��0, which—as in Eq. �19�—is lost by dissipation
within or outside the system. The net loss can thus be written
as

d�� = − dS��T,P,�	c� − ���T,P,�	c� − dS��S�,�U	,�V	,��nc	�

− ���S�,�U	,�V	,��nc	�

= − dS� − �� � 0 �20�

The terms dS� �S�,�U	,�V	,��nc	� and �� �S�,�U	,�V	,��nc	� constitute
“uncompensated transformations” of Clausius �81�—
respectively, within and outside the system—since they in-
volve irreversible change�s� in one or more intensive vari-
ables. For convenience, the four terms are unified in the
second line of Eq. �20�, into overall entropy changes within
and outside the system.

From Eq. �20�, the system will approach the equilibrium
position defined by ��=�min

� , equivalent to the maximum net
irreversible increase in entropy within and outside the sys-
tem. If dS�0 and ��0, this will again correspond to the
state at which maximum thermodynamic entropy is pro-
duced, �=�max. If the path of possible transitions is pre-
scribed �e.g., constant ��fr	�, constant ��r�, or a mixed
choice�, the system will approach the local minimum �min

�

=−��dS�+��� along that path; if not, it will converge to the
global minimum.

Thus in a dissipative equilibrium system, the final equi-
librium will occur at the position of minimum generalized
potential �eq

� �maximum Massieu function �0
��. If the incre-

mental increases dS�0 and ��0 are unrecoverable, this
will be equivalent to the position at which maximum ther-
modynamic entropy is produced. This provides an equilib-
rium analog of the MEP principle, which is easily over-
looked since it involves a connection between equilibrium
states and irreversible changes.

We can also consider the multiplier relations �6�, the vari-
ances �7�, and the covariances �8�, which yield a highly im-
portant set of relations for equilibrium systems, as listed in
Table I. These include the “Maxwell relations” �77,101�,
which express the connections between various material
properties or susceptibilities of the system �e.g., heat capac-
ity, compressibility, coefficient of thermal expansion, activity
coefficients, etc.�. The relations in Table I are valid only at
equilibrium, i.e., they apply on the manifold of equilibrium
positions. Although discovered long before Jaynes’ generic
analysis, such relations demonstrate the power of Jaynes’
method, particularly when applied to new situations.

B. Flow-controlled (steady-state) systems

We now examine a third kind of probabilistic system,
which much more closely matches our experience of real
systems and of life on Earth: the flow-controlled system �Fig.
1�c��, constrained by flows of various physical quantities fr
through the system. Flow-controlled systems are familiar to
fluid mechanics and engineers, as defined by the control vol-
ume, a geometric region through which fluid�s� can flow �the
Eulerian description�, bounded by its control surface. In the

5It is misleading to call � the entropy production. In English,
“production” implies an ongoing phenomenon, hence a rate process
�e.g., a nation’s steel production�. This can only apply to a flow
system. Confusingly, the symbol � is used interchangeably for the
amount of thermodynamic entropy produced by a system, its rate of
production by a system, or the rate per unit volume; these are la-
beled �, �̇, and �̂̇, respectively here.
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language of statistical mechanics, flow-controlled systems
constitute a separate “ensemble,” very different to those ex-
amined in equilibrium thermodynamics. For the simplified
flow system shown in Fig. 1�c�, the mean rate of change in
each conserved quantity fr with respect to time t within the
system is

d�fr	
dt

= �Fr	in − �Fr	out + � ḟ r	prod, �21�

where �Fr	in, �Fr	out, and � ḟ r	prod represent, respectively, the
mean flow rates of fr into and out of the control volume and
the rate of production within the control volume. At steady
state, d�fr	 /dt=0, and so for a system with no production
terms, Eq. �21� reduces to

�Fr	in = �Fr	out = �Fr	 . �22�

The mean flow rates �Fr	 can then be interpreted as con-
straints on the distribution of instantaneous flow rates Fri
through the system. By information-theoretical reasoning

�64,65� and/or the combinatorial basis of entropy �66–71�,
the MinXEnt principle can then be used to calculate the sta-
tionary or the most probable distribution of flow rates within
the system—its steady-state position—subject to the con-
straints on the system. Moment constraints are just moment
constraints, regardless of their physical manifestation. In
consequence, the entirety of Jaynes’ generic approach �Sec.
II� can be applied to the analysis of steady state, as well as
equilibrium systems. Of course, flow-controlled systems may
be subject to variable or cyclic flow rates, causing deviations
from the steady-state position; such effects are not consid-
ered further here.

Notwithstanding the broad applicability of Jaynes’
method to both equilibrium and steady-state systems, it is
important to understand their differences. In equilibrium sys-
tems, the physical entities represent individual particles �e.g.,
molecules, ions, oscillators, etc.� or entire systems of such
particles, which can choose different values fri of various
physical parameters fr. In contrast, in the Eulerian descrip-
tion of a steady-state system, the entities represent individual
fluid elements �in the limit, points�, which may adopt par-
ticular instantaneous flow rates Fri through the system. The
latter analysis therefore examines the bulk behavior of many
individual particles passing through a control volume, which
cannot readily be ascribed to particular particles. A further
distinction is that equilibrium systems require no effort to
maintain equilibrium, and can undergo reversible or irrevers-
ible changes; in contrast, maintenance or alteration of steady-
state systems inherently requires an irreversible change in the
universe. Aside from these differences, both systems have
many features in common:

�i� In keeping with any method of inference, there is no
guarantee that a predicted stationary position will occur, in
that there may be �unknown� dynamic inhibitions �“non-
ergodities”� which prevent its occurrence. Indeed, in equilib-
rium thermodynamics the existence of “metastable” states is
well known, and is dealt with by kinetic theory �rate pro-
cesses� and the activation energy concept. However, if the
analysis incorporates everything that is known about the sys-
tem, Jaynes’ method will provide the “best representation”
and the “expected position” of the system �45�. In this vein,
while it may be desirable to seek “mechanistic” or “dy-
namic” explanations for the observed steady state in particu-
lar flow-controlled systems—analogous to justifications of
equilibrium using the equations of motion �102� or Boltz-
mann’s H theorem �103�—the general principle must neces-
sarily be inferential �statistical or probabilistic�, just as it is in
equilibrium thermodynamics.

�ii� For a given constraint set, the stationary position D�

or H� is usually considered unique within its parameter �state
function� space �45–51�. However, this depends on the type
of constraints, e.g., power-law constraints are known to give
multiple stationary positions �104�. The uniqueness of the
stationary position, in general, is therefore not claimed here,
but is correct in the case of linear moment constraints �50�.

�iii� A unique stationary position D� or H� in parameter
space does not imply uniqueness of the dynamic structure�s�
which can produce it; indeed, many such structures may be
possible. The occurrence of any given structure will depend

TABLE I. Multiplier relations �6�, variances �7�, and covari-
ances �8� for the example equilibrium thermodynamic system �Sec.
III A� at equilibrium �note var�a�= �a2	− �a	2, cov�a ,b�= �ab	
− �a	�b	, and 	b implies b�c�.

Multiplier relations

�U	 = kT2
 � ln ��

�T
�

P,�	c�

�V	 = − kT
 � ln ��

�P
�

T,�	c�

�nc	 = kT
 � ln ��

�	c
�

T,P,�	b�

Variances

var�U� = kT2
 ��U	
�T

�
P,�	c�

var�V� = − kT
 ��V	
�P

�
T,�	c�

var�nc� = kT
 ��nc	
�	c

�
T,P,�	b�

Covariances �Maxwell relations�

cov�U,V� = − 
 ��U	
�P

�
T,�	c�

= T
 ��V	
�T

�
P,�	c�

cov�U,nc� = 
 ��U	
�	c

�
T,P,�	b�

= T
 ��nc	
�T

�
P,�	c�

cov�V,nc� = − 
 ��nc	
�P

�
T,�	c�

= 
 ��V	
�	c

�
T,P,�	b�

cov�nc,nb� = 
 ��nc	
�	b

�
T,P,�	c�b�

= 
 ��nb	
�	c

�
T,P,�	b�
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on the interplay between the system history �hysteresis phe-
nomena� and the dynamics �the extent of fluctuations, or “jit-
ter,” in the system�, both of which lie outside the domain of
Jaynes’ method per se. This feature is also well known in
equilibrium systems, e.g., the equilibrium position of a su-
persaturated solution does not provide any information about
the particle size distribution or geometric form of the precipi-
tant, which instead will depend on localized �history-
dependent� nucleation, crystallization, and diffusion phe-
nomena.

�iv� The MEP principle has been criticized for appearing
to be a means of selection between a few isolated optima,
rather than a true variational principle �40,52�. However,
many equilibrium systems also exhibit a discontinuous ap-
proach to equilibrium for dynamic reasons, especially those
with a phase change, e.g., the rapid solidification of a satu-
rated solution of sodium acetete trihydrate—which can dis-
solve in its own water of crystallization—when tapped. The
equilibrium between nitroglycerine and oxygen also illus-
trates this point. In flow-controlled systems, we might expect
any locally optimal steady states ��opt

� � to be similarly nar-
rowly defined, since they may require special coordination of
flows in different domains. Thus although derived by varia-
tional means, there is nothing wrong with the minimization
of �� as a selection principle.

The rationale for the analysis of a steady-state system by
Jaynes’ method is therefore identical—with many of the
same caveats—to that for equilibrium systems.

IV. ANALYSIS OF FLOW-CONTROLLED SYSTEMS

A. Control volume analysis

Calculation of the steady-state position of a flow-
controlled system can now proceed, first involving a tradi-
tional engineering thermodynamic analysis. Consider the
control volume shown in Fig. 2, divided into infinitesimal
volume elements, each of which is assumed to satisfy the
“local equilibrium assumption.” This allows the definition of
local specific �per unit mass� quantities including specific
internal energy u, specific volume �−1, specific moles mc of
each species c, and specific entropy s of each element, where
� is the fluid density, as well as intensive variables such as
temperature T, pressure P, and molar chemical potentials 	c

of each species c on its boundary. The elements are thus
sufficiently small for local equilibrium to hold, but obviously
represent averages over regions large enough to be consid-
ered a thermodynamic continuum. In general, for an element
subject to the total entropy flux6 js,tot, the volumetric rate of
entropy production within the element �SI units:
J K−1 m−3 s−1� and overall rate of production �J K−1 s−1� are
�92,105–107�

�̂̇ =
��s

�t
+ � · js,tot  0, �23�

�̇ =���
CV

�̂̇dV  0, �24�

where �= �� /�x ,� /�y ,� /�z�� is the Cartesian gradient op-
erator, a ·b is the vector scalar product �dot product�, and a�

is the transpose of a. For an element with mean local heat
flux jQ, diffusive mass fluxes jc of each species c �relative to
the mass-average velocity v through the element�, viscous

stress tensor7 �, and molar rate per unit volume �̂̇d of each
chemical reaction d=1, . . . ,D, from the conservation of en-
ergy, mass, momentum, and chemical species, the total en-
tropy flux and the rate of entropy production per volume
reduce to �92,105–107�

js,tot = �sv + jQ
 1

T
� − �

c=1

C

jc
 	c

McT
� , �25�

�̂̇ = jQ · �
 1

T
� − �

c=1

C

jc · ��
 	c

McT
� −

gc

T
� − � : � 
v

T
��

− �
d=1

D

�̂̇d
Ad

T
 0, �26�

where A :B is the tensor scalar product, ab� is the vector
dyadic product �often simply written as ab�, Mc is the mo-
lecular mass of species c, gc is the specific body force on
each species c, and Ad=�c=1

C �cd	c is the molar chemical af-
finity of reaction d, wherein �cd is the stoichiometric coeffi-
cient of species c in the dth reaction ��cd
0 for a product
and Ad�0 denotes spontaneous forward reaction�. Alterna-
tive formulations of Eq. �26� are available for different situ-
ations �105–107�; the present formulation is sufficiently
broad for the present discussion.

In engineering modeling, the local mass, momentum, and
energy conservation equations and local entropy production
�26� are usually nonanalytical and so are calculated on a two-
or three-dimensional grid of finite rather than infinitesimal

6We adhere strictly to engineering convention: a flow is measured
in SI units of quantities s−1, while a flux is expressed in quantities
m−2 s−1.

7The viscous stress tensor � is equal to the net or the molecular
stress tensor � less the uniform pressure component P, whence �
=�− P�, where � is the Kronecker delta tensor �105–107�. The
stress notation of Bird et al. �107� is adopted here, in which P
0
and �ij 
0 denote compression.

{ξd},σ
.̂{jc}

CV

Flows
of {fr}

dy
dx

dz
ττ

y

z

x

jQDiscrete
element .̂

FIG. 2. �Color online� Discretized control volume model of a
flow-controlled thermodynamic system.

STEADY STATE OF A DISSIPATIVE FLOW-CONTROLLED … PHYSICAL REVIEW E 80, 021113 �2009�

021113-7



domains �e.g., by the finite element method� such that the
local solutions are self-consistent and match the boundary
conditions and source-sink terms of the overall control vol-
ume �89,105–108�. This approach assumes that the calcu-
lated solution is unique. However, for many flow systems,
the entropy production �26� is indeterminate since one or

more of the fluxes �jQ, jc, �, and �̂̇d� and/or gradients ���T−1�,
��	c /T�, gc /T, ��v /T��, and Ad /T� across the overall con-
trol volume are unknown, there being no principle within
equilibrium thermodynamics by which they can be deter-
mined. In such cases, Eq. �26� has been solved by assuming
the near-equilibrium linear �Onsager� regime, for which clo-
sure of the equations can be attained by the use of the equi-
librium Gibbs-Duhem relation, Curie postulate, tensor sym-
metry, and specification of the �linear� mass, momentum, and
energy diffusion coefficients �105–107�. Outside the linear
regime, such as in turbulent fluid flow, these assumptions can
produce serious computational difficulties �e.g., the need for
extremely small elements� and are commonly handled by
broad simplifications or empirical rules. Indeed, for many
flow systems, the entropy production is completely disre-
garded. Equations �23�–�26� therefore apply to a flow-
controlled thermodynamic system at steady state, but in
many systems they may not uniquely define the steady state.

B. Jaynes’ analysis

We now examine a flow-controlled system from Jaynes’
perspective �Sec. II�. In general, for an infinitesimal fluid
element of a control volume, Jaynes’ relations for the steady-
state position are exactly those given in Eqs. �4�–�11�, but
this time with mean flux constraints jr instead of quantity
constraints �fr	 �for convenience the � · 	 notation is dropped�
and increments in generalized heat fluxes �qr instead of in
the generalized heats �Qr. The Lagrangian multipliers, say
�r, will of course be different from those of equilibrium ther-
modynamics �r, conjugate to the flux constraints considered.
We should also denote the cross entropy or the entropy by
some special symbol, e.g., Dst or Hst, to emphasize that it
applies to a steady-state system and is quite different to that
for an equilibrium system, Deq or Heq. Our generic analysis
of the steady-state position of a flow-controlled system is
now complete, requiring only the substitution of relevant pa-
rameters for the system under consideration.

Returning to the example of Sec. IV A, we consider that
each element can experience instantaneous values of the heat
flux jQ,I, the mass fluxes jNc

of each species c, the stress

tensor �J, and the reaction rates �̂̇Ld
, where the indices

I ,J ,Ld ,Nc, can �in principle� take any value. The system is
constrained by mean values of the heat flux jQ, the mass

fluxes jc, the stress tensor �, and the reaction rates �̂̇d through
or within the element and by the natural constraint �2�, where
expectations are taken with respect to the joint probability
�I=�I,J,�Ld�,�Nc� of instantaneous fluxes. As for the equilib-
rium analysis �Sec. III A� we assume equiprobable states,
and thus maximize the Shannon entropy,

Hst = − �
I=

−�

�

�
J=

−�

�

�
L1=

−�

�

¯ �
LD=

−�

�

�
N1=

−�

�

¯ �
NC=

−�

�

�I ln �I, �27�

subject to its constraints. From Eqs. �4�, �5�, and �9�,

�I
� =

�I
�

Z� ,

�I
� = exp
− �Q · jQ,I − �

c=0

C

�c · jNc
− ��:�J − �

d=1

D

�d�̂̇Ld� ,

�28�

Z� = e�0
�

= �
I=

−�

�

�
J=

−�

�

�
L1=

−�

�

¯ �
LD=

−�

�

�
N1=

−�

�

¯ �
NC=

−�

�

�I
�,

Hst
� = ln Z� + �Q · jQ + �

c=1

C

�c · jc + �� : � + �
d=1

D

�d�̂̇d, �29�

dHst
� = �Q · �qQ + �

c=1

C

�c · �qc + �� : �q� + �
d=1

D

�d�qd, �30�

where the multipliers �Q, �c, ��, and �d are associated with
the heat, the species, the stress tensor, and the reaction con-
straints ��Q and �c are vectors and �� is a second-order ten-
sor�; �qQ, �qc, �q�, and �qd are the corresponding changes in
generalized heat fluxes; �0

� is the Massieu function; and Z�

=e�0
�

the partition function. We see that Hst
� is a dimensionless

flux entropy. Equations �11�, �29�, and �30� then give the
change in a generalized potential function for steady-state
systems as follows:

d�st
� = − d�0

� = − d ln Z�

= − dHst
� + �Q · djQ + �

c=1

C

�c · djc + �� : d� + �
d=1

D

�dd�̂̇d

+ d�Q · jQ + �
c=1

C

d�c · jc + d�� : � + �
d=1

D

d�d�̂̇d. �31�

Again—with Gibbs—we could exclude a net change in the
multipliers �r, giving d�st

� ���r�
=�r=1

R �r�wr, where �wr are
changes in generalized work fluxes, in addition to those in-
corporated by other constraints. However, as with equilib-
rium systems �Sec. III A�, we wish to consider all possible
variations of �st

� . Integration of Eq. �31�, from the zero-flux
zero-multiplier �equilibrium� position �st0

� =−Hst0
� yields

�st
� = − Hst

� + �Q · jQ + �
c=1

C

�c · jc + �� : � + �
d=1

D

�d�̂̇d. �32�

This is the steady-state analog of the equilibrium generalized
potential �eq

� . Relations �28�–�32� apply only to quasistatic
transitions “on the manifold of steady-state positions.” How-
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ever, in this case—since this is a flow system—they always
involve irreversible processes.

C. Synthesis

We can now combine the control volume �Sec. IV A� and
the Jaynesian �Sec. IV B� analyses of the example problem
�Fig. 2�. Since the fluxes in Eqs. �26� and �32� are linearly
independent �not necessarily orthogonal�, it is possible to
equate similar terms, giving the following identities:

�st
� = − Hst

� −
�V
k

�̂̇ , �33�

�Q = −
�V
k

� 
 1

T
� , �34�

�c =
�V
k
��
 	c

McT
� −

gc

T
� , �35�

�� =
�V
k

� 
v
T
��

, �36�

�d =
�V
k

Ad

T
, �37�

where � and V, respectively, are characteristic time and vol-
ume scales for the system considered, which emerge from
the fact that �st

� , Hst
� , and each product in Eq. �32� must

be dimensionless.8
, 9

From Eq. �33� and the foregoing analysis �Secs. II and
III A�, if the flow-controlled system contains some pro-
cess�es� which dissipate its generalized potential �st

� , it will
move by increments,

d�st
� = − dHst

� −
�V
k

��̂̇ � 0 �38�

until it converges to a final steady-state position given by
d�st

� =0, hence at minimum �st
� . Equation �38� is analogous

to Eq. �20� for equilibrium systems, accounting for the loss
of generalized potential within and outside the system. If
dHst

� 0 and ��̂̇0, the steady-state position �st
� =�st,min

� will
correspond to the position of maximum entropy production
�̂̇= �̂̇max. The analysis therefore provides a theoretical justi-
fication for a local form of the MEP principle, conditional on
the assumption that incremental increases in Hst

� and �̂̇ are
unrecoverable. As with equilibrium systems �Sec. III A�, the
dissipation may be confined to a constant-multiplier ��r�,
constant-constraint �jr�, or mixed constraint path, leading to a

local �path-dependent� minimum �st,min
� or may be free to

choose its own path, whereupon it will attain a global mini-
mum.

Processes for which ��̂̇
0 �to which the MEP principle
applies� are here termed exoentropogenic,10 since they result
in the production of entropy and its export to the rest of the
universe. Exoentropogenic processes are one class of pro-
cesses leading to the formation of steady-state flow systems,
in the same way that exothermic reactions—in which the
heat �Q�0—are one class of processes which generate
equilibrium systems. It is left as an open question here
whether exoentropogenic processes �and hence the MEP
principle� are universal in application, or are merely an im-
portant class of processes applicable to flow systems at
steady state.

D. Implications

The analysis has several important implications. First, un-
der conditions in which the MEP principle applies, from Eqs.
�26� and �33�:

�i� If the fluxes or rates jQ, jc, �, and �̂̇d in Eq. �26� are
indeed constant, the system will achieve MEP by maximiz-
ing the magnitudes of the gradients or forces ���T−1��,
���	c /T��, �gc /T�, ���v /T���, and �Ad /T� across or within
each element, each weighted by its conjugate flux term.
Since the gradients can be interpreted as measures of dis-
equilibrium of the system, we see that a flow-controlled sys-
tem is driven to a steady-state position of maximum disequi-
librium.

�ii� If, on the other hand, the gradients or forces ��T−1�,
��	c /T�, gc /T, ��v /T��, and Ad /T in Eq. �26� are fixed, the
system will be driven to maximize the fluxes or rates jQ, jc, �,

and �̂̇d, again in the form of a weighted sum. In other words,
the most probable response of a system to gradients or forces
in one or more intensive variables �r is the occurrence of
flow of the corresponding physical quantities fr, at their
maximum mean flow rates. This is also consistent with maxi-
mum disequilibrium of the system.

The distinction between fixed flux jr �Neumann� and inten-
sive variable gradient ��r �Dirichlet� boundary conditions is
well known in the solution of differential equations. In the
MaxEnt analysis of a steady-state system, the choice be-
tween such boundary conditions plays exactly the same role
as the choice between fixed content �fr	 and intensive vari-
able �r constraints in an equilibrium system or, in other
words, between corresponding microcanonical and canonical
representations. Although the two representations within
each pair are different, the mathematical apparatus used to
examine either set of constraints is the same �c.f. �45��.
Flow-controlled systems can also be subject to composite
flux-gradient �Robin� boundary conditions, or a mixed set of
conditions, giving rise to steady states which have no equi-

8An alternative view, not considered further here, is to interpret
��V /k��gc /T� · jc as a generalized work flux, which must be sub-
tracted from a redefined generalized heat flux �qjc

�
= ��V /k�� �	c /McT� · jc.

9Note that �V has SI units of m3 s, equivalent to a four-
dimensional space-time element, or action divided by pressure.

10From ancient Greek: exo-, outer or external �obverse endo-,
within or internal�; tropos, transformation �used by Clausius �81��;
and -genic, generating or producing.
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librium analog in quantity-constrained systems.
To achieve maximum �̂̇ in Eq. �26�, the conjugate vecto-

rial fluxes and gradients should be collinear. A consequence
of the MEP principle is that the free fluxes or gradients will
try to orient themselves to attain collinearity, to the maxi-
mum extent allowable by competition between different
flows and/or by anisotropy within the system �e.g., due to the
velocity gradient�. Similarly, the system will endeavor to
align its principal stresses with the principal directions of the
velocity gradient. This may provide an explanation for the
many simplifications used in control volume analysis, such
as tensor symmetry.

While Eq. �26� is in differential form, in systems with
simple boundary conditions it may be possible to apply its
finite difference approximation to much larger domains. This
appears to be the case for the Earth climate system, which
has been analyzed �on a whole-Earth scale� using simple
two-box or ten-box models �1–13�. The analysis also indi-
cates MEP to be a local principle, which need not apply to
the universe as a whole. Only the entropy production of a
system—not the entire universe—is maximized, since it is
only within a system that there exist mechanisms by which
the MEP state can be attained. This is a characteristic feature
of previous applications of the MEP principle, which has
incited much debate �1–4,9,11,40�.

Tidying up the analysis, Eqs. �33�–�37� can be substituted
into Eqs. �28�–�32�. Steady-state analogs of the four laws of
equilibrium thermodynamics can also be obtained from
Jaynes’ approach �49,50�, as set out in Appendix B. We can
also consider the set of multiplier relations �6�, variances �7�,
and covariances �8� for steady-state systems, examined fur-
ther in Appendix C. The analysis therefore provides a set of
testable laws and transport relations for the behavior of
steady-state thermodynamic systems. Furthermore, as shown
in Appendix C, the Onsager linear regime emerges as a first-
order approximation to the analysis, in the vicinity of equi-
librium. The analysis therefore provides a general math-
ematical formalism for the analysis of flow systems—
including nonequilibrium thermodynamic systems—both
near and far from equilibrium.

This is as far as our comparative analysis of steady-state
thermodynamics can take us, using the parameters of equi-
librium thermodynamics, and it is important that it not be
taken too far. For example, in many systems the local equi-
librium assumption—which forces the MEP principle to
adopt a local formulation—may be too restrictive; such con-
siderations lead into the domain of more complicated ap-
proaches, such as extended irreversible thermodynamics
�109,110�. For more comprehensive treatments, it may be
necessary to abandon the connection with equilibrium pa-
rameters and conduct the steady-state analysis using the
“raw” Lagrangian multipliers �r—or some functions
thereof—obtained directly by MinXEnt. The raw multipliers
�the “ideal” gradients� could then be correlated with the ac-
tual gradients by gradient coefficients, analogous to the ac-
tivity and the fugacity coefficients of equilibrium thermody-
namics. In some systems, it may even be necessary to adopt
process- and direction-specific time and volume scales �rı�
and Vrı� �possibly also varying with position�, leading to
weighted scales �sys and Vsys for the system as a whole. The

analysis extends naturally to further developments, for ex-
ample, the use of a “local steady-state assumption” in the
analysis of transient phenomena. This leads into a higher-
order theory of acceleration phenomena, in which a maxi-
mum is sought in the sum of products of accelerative trans-
port terms �jr /�t and gradients of the gradients ��r

� �a
conditional maximum �̂̈ principle� �111�, an idea best exam-
ined elsewhere.

V. DISCUSSION

The foregoing analysis would be incomplete without a
brief account of its implications. From Sec. IV, MEP emerges
as a local, conditional principle, in which each local control
volume behaves as an actor or agent which seeks to mini-
mize its generalized potential �st

� and hence �conditionally�
to maximize its local entropy production. This provides a
driving force for the formation and the reinforcement of
“emergent” self-organization of the system as a whole, since
by such “cooperative federalism,” each local “selfish” con-
trol volume can achieve much higher entropy production
than it could of its own volition. We therefore see that the
MEP principle drives the formation of structure and function.
Of course, this does not in any way preclude the develop-
ment of competition between control volumes—or even be-
tween associations of control volumes or entire systems—for
a greater share of generalized potential; such competitive
forces are certainly well known to us. These twin effects, a
predominant higher level cooperation and a lower level �but
occasionally overwhelming� competition, are the hallmark of
the “dynamic steady state” of a dissipative flow-controlled
system.

The analysis therefore confirms a number of aspects of
the philosophy of Prigogine and co-workers on nonequilib-
rium dissipative systems �92,93,112,113�, even though his
“minimum entropy production principle” �valid only in the
linear regime� is quite different �11,39�. It also provides an
explanation for the “constructal law” of Bejan �114�: “for a
finite size flow system to persist in time �to survive� its con-
figuration must evolve… �to� provide easier and easier ac-
cess to the currents that flow through it.” Furthermore, it
confirms the essence of the �nonmathematical� gradient
theory of Schneider and Sagan �115�, who argued that “na-
ture abhors a gradient,” i.e., the occurrence of flow is a natu-
ral response to a physical gradient.

Finally, the analysis goes to the heart of the “riddle of
life” posed by many scientists �e.g., �116,117��, concerning
the perceived contradiction between the second law of ther-
modynamics and the existence of life. To recap, it is one
thing to suggest that life can form, in that its ability to in-
crease the thermodynamic entropy of the universe exceeds
the reduction in entropy associated with its structure. But if
life were merely an accident—a fluctuation—why should it
not just die out? Why should it be so resilient to extreme
events, as evidenced by its regrowth after the many mass-
extinction episodes in the history of the Earth? As shown, the
existence and the evolution of life are driven by a deeper,
purely probabilistic form of the second law �71�:
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“A system tends toward its most probable form.”

This “MaxProb” principle �66–71�, applied to an isolated or
an open dissipative equilibrium system, drives the system
toward the equilibrium position Heq

� or S� of minimum gen-
eralized potential �eq

� �e.g., minimum free energy F�, G�, or
J�� since this is more probable than other forms of the sys-
tem. In contrast, in a flow system it provides a driving force
for the formation of complex dissipative structures, including
life, to attain the local steady-state position Hst

� of minimum
generalized potential �st

� , hence �conditionally� of maximum
�̂̇, since this position—not the equilibrium position—is more
probable than other realizations of the system. The above
probabilistic statement of the second law therefore contains
within it both a “force of death” and a “force of life,” asso-
ciated, respectively, with constraints on the mean contents
�fr	 or fluxes �jr	 �or their corresponding multipliers�. It also
implies a surprising inevitability to the evolution of life in a
flow-controlled system, whenever the conditions are suitable,
and indeed, of other complex systems such as fluid turbu-
lence, biological and ecological structures, transport and
communications networks, economic systems, and human
�or sentient� civilization.

VI. CONCLUSIONS

In this study, a clear distinction is made between �i�
quantity-controlled systems, constrained by a set of mean
physical quantities �fr	 and/or their corresponding multipliers
�r, which converge toward an equilibrium position, and �ii�
flow-controlled systems, as defined by a control volume �the
Eulerian description�, constrained by a set of mean fluxes �jr	
and/or their corresponding multipliers �r, which converge to-
ward a steady-state position. A theory to determine the
steady-state position of a flow-controlled thermodynamic
system is derived using the generic MaxEnt principle of
Jaynes �45–51,65�. The analysis is shown to yield a local,
conditional form of the MEP principle. It also yields steady-
state analogs of the four laws of equilibrium thermodynam-
ics, and sets of multiplier, variance, and covariance
�Maxwell-like� relations applicable to flow-controlled sys-
tems at steady state. The derivation is limited to reproducible
flow-controlled systems, but does not appear to be restricted
to the near-equilibrium linear regime; indeed, the latter can
be recovered as a special case �see Appendix C�. The analy-
sis reveals a very different manifestation of the second law of
thermodynamics in steady-state systems, which provides a
driving force for the formation of complex dissipative sys-
tems, including life.

Further work is required on the scope of the present
analysis, and the relationship between concepts developed
here and those of others, e.g., between the steady-state ge-
neric entropy Hst

� , the path-based entropies of Dewar �43,44�
and Attard �56,57�, and the quantum formulation of Beretta
�58–61�. Greater attention should also be paid to the tremen-
dous power of the MinXEnt/MaxEnt method pioneered by
Jaynes �45–51� and its combinatorial �probabilistic� basis
�66–71�.

ACKNOWLEDGMENTS

The author warmly thanks the participants of the 2007
and 2008 MEP workshops hosted by the Max-Planck-Institut
für Biogeochemie, Jena, Germany, especially Axel Kleidon,
Roderick Dewar, Filip Meysman, Graham Farquhar, Michel
Crucifix, Peter Cox, Tim Jupp, Adrian Bejan, and Ralph Lo-
renz, for valuable discussions; Bjarne Andresen, Marian
Grendar, Bernd Noack, and many of the above, for com-
ments on the manuscript; The University of New South
Wales and the above Institute for financial support; and the
European Commission for financial support as a Marie Curie
Incoming International Member �Contract No. 039729-
rkniven-mc-iif-06� under Framework Programme 6.

APPENDIX A: TERMINOLOGY

From the foregoing discussion �especially Secs. II–IV�, it
is evident that there are difficulties in terminology concern-
ing the negative Massieu function ��=−�0

�=−ln Zq
�. Al-

though described herein as a free-energy-like concept or gen-
eralized potential, from Eq. �5� it has more in keeping with
an entropy-related quantity. In equilibrium systems, �eq

� is
usually multiplied by kT to give the free energy; but as
shown in Sec. III A, it is more appropriate to multiply it by k
to avoid complications with changes in the intensive vari-
ables. The free-energy concept of Gibbs �83�, designed
purely for changes in the extensive variables, is thus less
versatile than the slightly older concept of Massieu �76�,
adopted by many well-known thermodynamicists �c.f.
�77,95,97–100�� for this reason. Concepts related to the free
energy, such as essergy and exergy �84–89�, suffer from the
same disadvantage �a further disadvantage is their need for
an unchanging reference system�. In steady-state systems, we
could multiply �st

� by kT /�V to give the “free power” or by
k /��T−1��V to give a flux analog, but neither choice makes
much sense and would involve the same awkwardness in the
handling of intensive variables as does the free energy. If �st

�

must have units, it is preferable to multiply it by k /�V to
give it the same units as �̂̇; being of opposite sign, we could
call this �as would Gibbs �82�� the “available capacity for
entropy production” or �as would Brillouin �118�� the “free
negentropy production.” Provided that the dissipative pro-
cesses are macroscopically reproducible, the fact that this
quantity has entropy units �a nonconserved quantity� instead
of energy units �a conserved quantity� will not affect its ap-
plication.

APPENDIX B: STEADY-STATE “LAWS”

Steady-state analogs of the laws of equilibrium thermody-
namics are readily obtainable from Jaynes’ generic approach
�49,50�.11 Although unsurprising, they are included here for
completeness. First, two control volumes which are joined
�side by side� such that their fluxes are combined �i.e.,
�jm	tot= �jm	1+ �jm	2 for �jm	� ��jr	�� will attain a steady-state

11Tribus �49� would distinguish them as “laws of thermostatics”
and “laws of thermodynamics.”
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position of identical multipliers ��m� and so will share com-
mon mth gradients; this is the zeroth law. The first law is
simply a definition of generalized heat and work for the flux
of a conserved quantity, which at steady state is given by
d�jr	=�qr+�wr; thus, �qr gives a �spontaneous� change in
the distribution of instantaneous fluxes, while �wr represents
a �recoverable� change in the instantaneous fluxes them-
selves. The second law can be stated in many ways �see Sec.
V�; in a state function sense, it is given by the generalized
Clausius equality �30�. The third law—arguably more of a
definition of a convenient reference state—can be stated as
“the steady-state entropy Hst

� approaches zero at the position

of zero gradients,” i.e., when it relaxes to an equilibrium
position.

APPENDIX C: JAYNES’ RELATIONS

In linear transport theory, it is common to employ the
so-called “Curie postulate,” in which the scalar, the vector, or
the tensor fluxes jr, jr, or jr are assumed to depend on forces
or gradients of the same type ��r, ��r or ��r

�, but not on
those of other types �105–107,119�. This postulate cannot be
assumed to apply in general. In consequence, Jaynes’ rela-
tions �6�–�8� and higher derivatives for scalar and each com-

TABLE II. Multiplier relations �C1�, variances �C2�, and covariances �C3� for the steady-state thermodynamic system of Fig. 2, at steady
state �here K=�V /k, while subscripts b and e, respectively, imply b�c and e�d�. The parameters held constant in each partial derivative
can be judged by context.

Multiplier relations Covariances �Maxwell-like relations�
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ponent of vector and tensor multipliers in a steady-state sys-
tem will be of generalized form

��0
�

��rı�
= − �jrı�	 , �C1�

�2�0
�

��rı�
2 = �jrı�

2 	 − �jrı�	2 = −
��jrı�	
��rı�

, �C2�

�2�0
�

��m�� � �rı�
= �jrı�jm��	 − �jrı�	�jm��	 = −

��jrı�	
��m��

= −
��jm��	
��rı�

,

�C3�

�2�0
�

��n�� � �m�� � �rı�
= −

��jrı�	
��n�� � �m��

= −
��jm��	

��n�� � �rı�

= −
��jn��	

��rı� � �m��

, �C4�

]

where the expectation notation � · 	 is reinstated;
ı , � ,� ,� ,� ,�� �x ,y ,z� �with � ,� ,� redundant for vectors
and all directions redundant for scalars�. Each partial deriva-
tive is taken at constant other Lagrangian multipliers.

Relations �C1�–�C3� for the example system �Fig. 2� are
listed in Table II. Analogous to those in Table I, the identities
in Table II apply only at steady state, i.e., they describe qua-
sistatic transitions on the manifold of steady-state positions.
Note that these relations do not impose tensor symmetry,
e.g., ���ı�	 /����ı

=����ı	 /���ı�
does not imply ��ı�	= ���ı	 un-

less ��ı�
=���ı

.
Furthermore, each flux can be expanded in a Taylor series

about the zero-multiplier �equilibrium� position �jrı�	 ���r=0�
=0 �see Appendix B�, yielding �77�

�jrı�	 = �
m��

Lrı�,m��
0 �m�� +

1

2! �
m��

�
n��

Lrı�,m��,n��
0 �m���n�� + ¯

�C5�

with the equilibrium-limit derivatives

Lrı�,m��
0 = � ��jrı�	

��m��
�

��r=0�
,

Lrı�,m��,n��
0 = � �2�jrı�	

��m�� � �n��
�

��r=0�
.

Close to equilibrium, this can be approximated by discarding
all but the first-order terms

�jrı�	 � �
m��

Lrı�,m��
0 �m��. �C6�

By the use of Jaynes’ method, we therefore recover the near-
equilibrium linear regime �C6� with, from Eq. �C3�, the On-
sager reciprocal relations Lrı�,m��

0 =Lm��,rı�
0 �54,55�. For

simple boundary conditions, these relations may apply to the
overall system as well as at local scales. However, the analy-
sis goes well beyond Onsager’s, indicating that the reciprocal
relations �C3� and higher derivatives �Eq. �C4� and onward�
also apply well away from equilibrium, at least when ex-
pressed in terms of the raw multipliers �see Sec. IV D� at
local scales, although they will not then enter into expan-
sions �C5� and �C6�. Of course, expansion �C5� �hence Eq.
�C6�� will become more and more inaccurate with increasing
distance from equilibrium, even if successively higher-order
terms are included. From Eq. �C4� and onward, each set of
higher-order derivatives will also obey a symmetry relation,
both near and far from equilibrium.
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